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K. Mahesh 
Research Scholar, IIT Bombay 
	

Dr.	K.	Mahesh,	a	Research	Scientist	in	IIT	Bombay,	has	been	working	in	
the	area	of	history	of	mathematics	and	astronomy	with	a	focus	on	source	
works	 in	 Sanskrit.	 He	 did	 his	 post-graduation	 (Ācārya	 in	 Siddhānta	
Jyotiṣa)	at	the	Rashtriya	Sanskrit	Vidyapeetha,	Tirupati	and	then	did	PhD	
in	IIT	Bombay	(2010)	with	Prof.	K.	Ramasubramanian.	He	did	his	post-
doctoral	research	at	CNRS	&	University	of	Paris.	A	number	of	his	research	
papers	have	been	published	 in	peer-reviewed	journals.	His	 two	books,	
Critical	edition	of	Karaṇābharaṇa,	and	Studies	in	Indian	Mathematics	and	
Astronomy	 (co-edited),	 have	 been	 published	 recently.	 The	 Indian	
National	Science	Academy	has	conferred	the	prestigious	Young	Historian	
of	Science	Award	on	him	in	2015	in	recognition	of	his	significant	research	
contribution.	

	
Nīlakaṇṭha's commentary  

on the Gaṇita section of Āryabhaṭīya 

The	 Āryabhaṭīya	 is	 one	 of	 the	 valuable	 works	 on	 astronomy	 and	 mathematics,	
authored	 by	 Āryabhaṭa	 at	 the	 end	 of	 5th	 century	 CE,	 that	 received	 favourably	
throughout	India.	As	an	evidence	of	its	reputation,	we	find	several	commentaries	on	
it	composed	by	later	astronomers.	Apart	from	that	we	see	many	independent	works	
and	karaṇa	texts	based	on	it	which	were	also	popular.	Among	the	commentaries	on	
the	 Āryabhaṭīya	 that	 have	 been	 authored	 so	 far,	 the	 Āryabhaṭīya-bhāṣya	 of	
Nīlakaṇṭha	Somayājī	(1444–1544	CE)	is	by	far	the	best	and	most	elaborate	one.	He	
presents	multi-fold	reasoning	to	the	enunciations	of	Āryabhaṭa	along	with	a	number	
of	citations	of	authority,	illustrations	and	various	related	topics.	Some	of	its	distinct	
features	 found	 in	 the	 Gaṇita	 section	 of	 it	 would	 be	 discussed,	 during	 the	
presentation.	
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G. Rajarajeswari 
Research Scholar, Department of Sanskrit, University of Madras 
	

G.	 Rajarajeswari,	 is	 a	 Research	 Scholar	 at	 University	 of	 Madras,	
Department	of	Sanskrit.	She	completed	an	M.Phil	 in	 Indian	Astronomy	
and	has	worked	on	Mahājyānayanaprakāraḥ,	a	manuscript	on	derivation	
of	sine	series,	under	the	supervision	of	Prof.	M.S.	Sriram,	President	of	the	
Prof.	K.V.	Sarma	Research	Foundation,	Chennai.	She	is	currently	working	
on	Triprasnadhyaya	in	Indian	astronomy.	

	
Iterative process for obtaining the Infinite series for the Sine and 

Cosine functions in the Kerala work, Mahājyānayanaprakāraḥ 

It	is	well	known	that	the	infinite	series	expansion	for	the	sine	and	cosine	functions	

were	first	discussed	in	the	Kerala	works	on	astronomy	and	mathematics,	and	are	

invariably	ascribed	to	Mādhava		of	Sangramagrama	(14th	century	CE).	The	full	proofs	

of	 these	are	 to	 be	 found	 in	Gaṇita-yukti-bhāṣā	of	 Jyeṣṭhadeva	 (composed	around	

1530	CE).	However	 there	 is	 a	Kerala	work	called	Mahājyānayanaprakāraḥ	which	

describes	 the	 infinte	 series	 for	 the	 jyā	 (Rsin	 𝜃)	 and	 the	 śarā	 (R(1-cos	 𝜃)	 )	 and	

provides		a	shorter	derivation	of	them.	This	was	discussed	in	a	paper	by	David	Gold	

and	David	Pingree	in	1991.	However,	that	paper	did	not	explain	the	derivation	of	the	

infinite	series	in	the	manuscript.	In	this	paper	we	provide	the	derivation	completely	

based	 on	 the	 upapatti	 provided	 by	 the	 author	 of	 the	 manuscript	 himself.	 This	

derivation	is	very	similar	to	the	one	in	Gaṇita-yukti-bhāṣā	,	but	differs	from	it	in	some	

respects.	 Both	 the	 derivations	 are	 based	 on	 the	 iterative	 solution	of	 the	 discrete	

version	of	the	equations:	

																																									𝑠𝑖𝑛𝜃 = 	∫ 𝑐𝑜𝑠𝜃*𝑑𝜃* = 	𝜃 −	∫ (1 − cosθ′)𝑑𝜃′5
6

5
6 ,	

																			1 − 𝑐𝑜𝑠𝜃 = 	∫ 𝑠𝑖𝑛𝜃*𝑑𝜃*5
6 	,	

and	make	use	of	the	result:		∑ 𝑗9 	≈ ;<=>

9?@
	 , for	large	𝑛	.				;I@

JK6 This	result	is		crucial		for	

obtaining	the	infinite		series	for	𝜋	also.			However,	no		iterative	process		is		involved	

there.	
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Athira K. Babu 
Research Scholar, Department of Sanskrit Sahitya, Sree Sankaracharya 

University of Sanskrit, Kerala 
		

Athira	 K.	 Babu	 is	 a	 research	 scholar	 at	 the	 Department	 of	 Sanskrit	
Sahitya,	Sree	Sankaracharya	University	of	Sanskrit,	Kalady,	Kerala,	and	
pursues	 her	 PhD	 on	 “Rationales	 in	 Indian	Mathematics:	 A	 Study	with	
Special	Focus	on	the	Sanskrit	Commentaries	of	Bījagaṇita”.	Her	research	
mainly	focuses	on	Indian	mathematics,	the	Kerala	School	of	Mathematics,	
and	ancient	 Indian	 chemistry.	 She	 completed	her	graduation,	BEd	and	
post-graduation	 in	 mathematics	 from	 Mahatma	 Gandhi	 University,	
Kottayam,	Kerala	 and	 also	 a	 post-graduation	 in	 Sanskrit	 Sahitya	 from	
Sree	Sanskracharya	University	of	Sanskrit,	Kalady,	Kerala.	She	completed	
an	M	Phil	from	the	same	university	on	the	title	“A	Review	on	Veṇvāroha	
by	Mādhava	of	Saṅgamagrāma”.	

	
Algebraic operations of surds in Bījapallava,  

a unique commentary on Bījagaṇita 

The	 Sanskrit	 term	 karaṇī	 is	 used	 for	 surd,	 the	 irrational	 root	 of	 an	 integer.	 In	
Siddhānta	 Śekhara,	 Śrīpati	 defines:	 “The	 number	 whose	 square	 root	 cannot	 be	
obtained	exactly	 is	 said	 to	 form	an	 irrational	quantity	karaṇī	 (!ा#यं	न	मूऱं	खऱु	य,य	

राशे,त,य	1तत2ठं	करणीतत	नाम	।)”.	 It	 can	be	 seen	 that	 the	elementary	 treatments	of	

surds,	particularly	addition,	subtraction,	multiplication,	separation	and	extraction	
of	square	root	of	surds,	compound	of	surds	and	the	like	occurs	in	the	algebraic	works	
on	 Indian	mathematics.	 The	 present	 article	 gives	 an	 account	 of	 the	 treatment	 of	
surds	 in	Bījapallava,	 a	 unique	 commentary	 on	Bījagaṇita,	 algebra	 in	 Sanskrit	 by	
Bhāskarācārya.	

The	Sanskrit	term	Gaṇitaśāstra,	meaning	literally	the	“science	of	calculation”,	is	used	
for	mathematics.	 According	 to	 Vedāṅga	 Jyotiṣa,	 “Like	 the	 crests	 on	 the	 heads	 of	
peacock,	 as	 the	gems	on	 the	hoods	of	 cobras,	 so	 is	mathematics	at	 the	 top	of	 all	
science.”	 This	 statement	 reveals	 the	 importance	 given	 to	mathematics	 in	 ancient	
India.	In	Sanskrit,	algebra	is	known	as	avyaktagaṇita	or	bījagaṇita	and	deals	with	
the	 determination	 of	 unknown	 entities,	 while	 arithmetic	 (vyaktagaṇita	 or	
pāṭīgaṇita)	 deals	 with	 the	 mathematical	 operations	 with	 known	 entities.	
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Bhāskarācārya’s	Bījagaṇita,	a	Sanskrit	classic	on	algebra,	is	the	second	chapter	of	his	
monumental	treatise	on	mathematics,	Siddhāntaśiromaṇi.	

Bījapallava	is	a	famous	Sanskrit	commentary	on	Bījagaṇita	by	Kṛṣṇa	Daivajña	(16th		
century).	The	name	Bījapallava	 is	 a	 compound	 formed	by	 the	 composition	of	 the	
words	 bīja,	 meaning	 algebra,	 the	 science	 of	 analytical	 calculation,	 and	 pallava,	
meaning	 ‘sprouts’.	 Bījapallava	 thus	 means	 “the	 sprout	 of	 algebra”.	 In	 the	
introduction	 of	 the	 edition	 of	Bījapallava,	 T.V.	 Radhakrishnan	writes,	 “When	 the	
advent	of	spring	was	visible	by	the	sprouts	on	the	trees	Sri	Kṛṣṇa	Daivajña	realised	
that	the	tree	of	algebra	also	should	have	its	sprouts.	So	he	wrote	this	commentary	
and	 called	 it	 the	 sprout	 of	 algebra	 or	 Bījapallava,	 announcing	 to	 the	 people	 all	
around	that	this	knowledge	also	was	bound	to	have	a	better	recognition.”	

Radhakrishna	Sastri,	the	editor	of	Bījapallava,	also	stated	that	in	the	introduction	of	
the	 work,	 the	 author	 of	 the	 original	 text	 gives	 only	 the	 general	 enunciations	 in	
original	 text	 (the	 mūlagrantha).	 A	 commentary	 consists	 of	 the	 explanatory	
statements	 and	 demonstrations	 of	 the	 general	 enunciations.	 Usually,	 the	
demonstrations	are	merely	verifications	(by	examples)	in	order	to	understand	the	
text	correctly.	Here	is	the	relevance	of	the	study	of	the	commentary	on	Bījagaṇita.	

The	other	Sanskrit	commentaries	during	the	medieval	period	are:	The	Sūryaprakaśa	
of	 Sūryadāsa,	 Bījavivaraṇa	 (1639	 CE)	 of	 Vīreśvara,	 Śiśubodhana	 (1652	 CE)	 of	
Bhāskara	of	Rājagiri,	Bījaprabodha	(1687	CE)	of	Rāmakṛṣṇa,	Vāsanābhāṣya	(before	
1725	CE)	of	Haridāsa,	Bālabodhinī	(1792	CE)	of	Kṛpārāma.		

There	are	two	editions	of	Bījapallavam	of	Kṛṣṇa	Daivajña:	(1)	by	Dattatreya	Apte,	
entitled	Bhāskarīyabījagaṇitam	with	the	Vyākhyā	Navāṅkura	of	Kṛṣṇa,	published	as	
ASS	99,	Poona,	1930;	 (2)	by	T.V.	Radhakrishna	Sastri,	 entitled	Bījapallavam	with	
introduction	by	T.V.	Radhakrishna	Sastri,	published	as	Madras	GOS	67,	TSMS	78,	
Thanjavur,	 1958.	 The	 work	 Bījapallava	 of	 Kṛṣṇa	 Daivajña:	 Algebra	 in	 Sixteenth-	
Century	India,	a	critical	study	by	Sita	Sunder	Ram	in	2012	is	a	recent	study.	

Bījapallava	is	divided	into	thirteen	chapters	(adhyāyas)	which	contain	the	six-fold	
operation	of	positive	and	negative	quantities,	zero,	unknowns	and	surds	(karaṇī),	
the	 indeterminate	 equations	 of	 the	 first	 degree	 (kuṭṭaka),	 and	 second	 degree	
separately;	 linear	 and	 quadratic	 equations	 having	 more	 than	 one	 unknown;	
operations	with	products	of	several	unknowns;	a	section	about	the	author	Bhāskara	
and	his	works.	

This	paper	tries	to	demonstrate	the	reflections	of	elementary	treatment	of	surds	in	
the	mathematical	tradition	of	India	with	respect	to	the	commentary	Bījapallava	on	
Bījagaṇita,	especially	under	the	background	of	medieval	India.	
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M. Devanand Mallayya 
Pursuing Integrated BSMS, IISER-TVM, Thiruvananthapuram, Kerala 
	

M.	Devanand	Mallayya	was	born	in	Thiruvananthapuram	in	2000	as	the	
second	son	of	Mrs.	Anitha	Mallayya	and	Dr	V	Madhukar	Mallayya.	With	
an	ardent	desire	to	pursue	higher	studies	and	research	in	mathematics,	
after	completing	Class	XII	he	joined	the	Integrated	BSMS	Program	of	the	
Indian	 Institute	 of	 Science	 Education	 and	 Research	 (IISER–TVM)	 at	
Trivandrum	in	2018,	and	is	now	in	his	sixth	semester	with	Mathematics	
Major	along	with	Physics	and	Data	Science	as	Minors.	
	

Mathematical Application of Mādhava’s Series Approximation and 
Convergence Acceleration Techniques 
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Keshav Melnad 
Post Doctoral Fellow, IIT Gandhinagar 
		

From	the	age	of	ten,	Keshav	Melnad	underwent	the	traditional	gurukula	
system	of	 education	 for	 twelve	 years,	 which	 included	 learning	 Vedas,	
Śāstras,	Yoga,	fine	arts	as	well	as	modern	science.	During	this	period,	he	
also	graduated	with	two	Bachelor’s	degrees	and	a	Master’s	degree.	Later,	
having	 been	 awarded	 a	 JRF,	 he	 completed	 his	 research	 in	 the	 field	 of	
History	of	Indian	Astronomy	and	Mathematics	from	IIT	Bombay	and	was	
awarded	a	doctoral	degree	for	his	thesis,	"A	Critical	Study	of	Haridatta's	
Jagadbhūṣaṇa".	Currently,	Keshav	works	as	a	Post-Doctoral	Fellow	in	the	
project	“History	of	Mathematics	of	India”	at	IIT	Gandhinagar,	Gujarat.	

	
A glimpse of astronomical table text  
through Haridatta's Jagadbhūṣaṇa 

Tracing	 the	 development	 of	 Indian	 astronomy	 throws	 valuable	 insights	 on	 the	
sociocultural	and	intellectual	interactions	with	other	cultures,	as	can	be	seen	in	the	
astronomical	 literature	 of	 Siddhāntas,	 Karaṇas	 and	 Tantras,	 and	 particularly	
Koṣṭhakas	/	Sāraṇīs	(tables),	which	are	the	primary	focus	of	this	talk.	

Ancient	 astronomical	 tables	 are	 perceived	 as	 a	 continuous	 descent	 with	
modification	 and	 advancement,	 spreading	 through	 the	 Babylonian,	 Greek,	 and	
Islamic	traditions	successively,	eventually	leading	to	the	manifold	tables	of	modern	
astronomy	in	its	pre-computer	period.	The	origin	of	the	Indian	astronomical	tables	
appears	to	be	collaterally	related	to	this	lineage,	but	with	a	substantial	amount	of	
independent	development.	Their	major	contents	include	mean	and	true	motions	of	
the	 luminaries,	 synodic	 phenomena,	 eclipses,	 trigonometry	 along	with	 necessary	
parameters	 for	 computation.	 At	 the	 times	 when	 algebraic	 notation	 and	
mathematical	graphing	techniques	were	absent,	the	tabular	format	was	considered	
the	 best	 way	 to	 transmit	 precise	 information	 to	 the	 user.	 As	 far	 as	 the	 Indian	
tradition	 goes,	 one	 of	 the	 main	 advantage	 of	 such	 tables	 would	 be	 to	 achieve	
significant	simplification	in	the	computational	process;	they	became	the	standard	
supplement	 for	 astronomers	 as	 well	 as	 astrologers,	 who	 through	 their	 practice	
helped	 compose	 additional	 calendrical,	 astrological	 texts	 like	 almanacs	 and	
ephemerides	(Pañcāṅga).	

This	talk	focuses	on	one	particular	text,	the	Jagadbhūṣaṇa	of	Haridatta,	which	gives	
a	simplified	method	for	calculating	planetary	positions.	
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Akhilesh Kumar V. 
Graduate student at IIIT, Bangalore 
	

Akhilesh	Kumar	V,	21,	 completed	his	Bachelor's	 in	Physics	 from	Azim	
Premji	University	in	2020	and	is	currently	pursuing	MSc	Digital	Society	
at	the	International	Institute	of	Information	Technology,	Bengaluru.	His	
research	 interests	 include	 Applied	 Mathematics,	 Human-Computer	
Interaction,	 Data	 Analysis,	 ICT	 Regulation	 and	 Policy	 Research,	
Qualitative	and	Quantitative	Research	Analysis.	He	is	currently	working	
as	an	intern	as	part	of	the	Math	Heritage	Initiative	at	NIAS,	Bengaluru,	a	
platform	established	 in	2020	 to	promote	 the	 study	of	 and	exploration	
into	math	and	computational	aspects,	with	a	focus	on	young	scholars.	

with	

Shailaja D Sharma 
Professor, NIAS Mathematics Heritage Initiative 
	

A Survey of Computational Methods in Kolam 

Women	in	many	households	 in	southern	India	 follow	a	 long-standing	tradition	of	
decorating	 the	 threshold	 of	 their	 home	 at	 dawn	 every	 day	 by	 drawing	 stylized	
geometrical	 patterns	 on	 the	 floor,	 using	 rice	 powder,	 powdered	 soapstone,	 or	 a	
paste	of	rice	in	water.	These	traditional	drawings,	called	kolams	in	Tamil	Nadu,	seem	
to	 have	 ancient	 origins.	 Kolams	 are	 enigmatic	 patterns,	 and	 have	 attracted	 the	
attention	 of	 social	 anthropologists	 and	mathematicians	 alike.	 Although	 they	 are	
‘performed’	without	reference	to	a	textbook	or	handbook	of	patterns,	that	is	to	say,	
they	 are	 drawn	 from	 so-called	 muscle	 memory,	 they	 have	 intrigued	 onlookers	
because	of	their	interesting	and	complex	patterns.	Kolams	have	been	studied	using	
different	 computational	 and	mathematical	methods,	 although	 they	 have	 entered	
into	 scholarly	 literature	 only	 since	 the	 1970s.	 Lindenmeyer	 language,	 turtle	
graphics,	 array	 grammars,	 representation	 using	 modular	 numbers	 and	 other	
computational	methods	are	covered	in	the	present	survey.	We	have	undertaken	a	
comprehensive	 reconstruction	of	 several	Kolams	using	multiple	methods.	 Such	a	
comprehensive	and	comparative	study	 is	missing	 in	 the	 literature,	which	may	be	
partly	why	these	highly	interesting	patterns	have	so	far	drawn	a	limited	amount	of	
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attention.	 The	 present	 study	 is	 restricted	 to	 Kolams	 drawn	 on	 a	 rectangular	 or	
slanting	grid	of	dots,	with	lines	going	around	the	dots	(pulli	kolam).		

In	computer	science,	a	formal	language	is	specified	by	a	grammar,	where	a	grammar	
consists	of	a	set	of	symbols,	along	with	rules	 for	producing	words	and	sentences.	
The	production	rules	are	also	called	‘re-writing	rules’	and	replace	a	given	string	with	
another	string.	Picture	languages	is	a	formal	language	where	the	starting	string	is	a	
symbol	string	and	re-writing	rules	are	pictures.	Kolams	generated	by	such	methods	
are	discussed	by	Maria	Ascher	(2002).	

An	important	shortcoming	of	the	above	method	is	the	absence	of	reference	to	the	
grid	of	dots,	which	 is	 the	 starting	point	 for	 the	Kolams	under	discussion.	 Several	
methods	of	generating	Kolam	patterns	overcome	this	shortcoming.	Array	grammars	
deal	with	two-dimensional	arrays	of	symbols	instead	of	strings	of	symbols	and	can	
thus	be	defined	on	a	grid	of	dots.	Siromoey	et	al.	(1973,1974)	give	array	rewriting	
rules	 wherein,	 by	 a	 suitable	 choice	 of	 primitives,	 terminal	 and	 non-terminal	
symbols,	a	given	array	grammar	can	be	seen	to	correspond	to	a	defined	family	of	
Kolams.		

In	practice,	the	womenfolk	who	draw	Kolams	lay	out	the	pulli	array	first	and	then	
straight	 lines,	 threads	 or	 circles	 are	 drawn	 connecting	 or	 encircling	 the	 dots.	 If	
labelled	dots	are	generated	first	with	the	labels	contain	the	instructions	on	the	‘state’	
of	 the	 dot,	 then	 the	 final	 kolam	 required	 can	 be	 formed	 by	 simply	 reading	 the	
metadata	 contained	 in	 the	 labels	 The	 advantage	 of	 this	 method	 is	 that	 a	 single	
grammar	with	a	finite	number	of	instructions	can	generate	an	infinite	set	of	kolam	
patterns	of	different	sizes.		

Kolams	can	be	analysed	as	being	 constructed	on	a	grid	of	dots,	which	 is	 either	a	
square	grid	(ner	pulli)	or	an	 inclined	grid	or	rhombic	grid	(nadu	pulli).	 In	certain	
circumstances,	Kolams	can	be	associated	with	a	unique	combination	of	hexadecimal	
numbers,	based	on	the	binary	coding	of	the	grid	dots.	Yet	another	approach	models	
the	structure	of	the	Kolam,	by	defining	comprehensively	the	relationship	between	
neighbouring	dots	on	the	dot	array,	considering	each	dot	as	a	vertex	and	the	Kolam	
as	a	graph.	A	tree	structure,	called	N-line,	is	constructed	by	joining	vertices	which	
have	 certain	well-defined	 relationships	and	 the	Kolam	 is	 seen	as	a	medial	 graph	
cutting	across	the	N-line.	This	method	is	introduced	by	Yanagisawa	et	al.	(2007)	and	
is	used	to	generate	large	families	of	computer	generated	Kolams.	

Nagata	(2007)	treats	Kolam	as	a	pattern	emerging	over	time,	through	directed	and	
continuous	moves,	similar	to	voiced	language.	Tile	coding	is	a	way	of	setting	up	the	
status	of	4	edges	of	a	tile	containing	a	dot.	I.	A	set	of	sequential	statuses	from	the	
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starting	edge	between	two	adjacent	tiles	is	called	a	chain	code.	Tile	and	Chain	Codes	
can	be	used	to	fully	describe	a	Kolam.		

We	 thus	 describe	 a	 large	 number	 of	 different	 extant	 computational	 methods	 of	
describing	and	generating	Kolams	and	list	a	few	additional	approaches	not	included	
in	the	present	survey.	The	Kolams	so	derived	may	be	finite,	extendable	or	infinite.	
Generated	Kolams	include	fractals	and	space	filling	curves.	It	is	clear	that	Kolams	
encode	 rich	 mathematical	 and	 computational	 content,	 which	 has	 been	 only	
minimally	explored.	Directions	for	further	research	are	indicated.			
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Sahana	Cidambi	is	a	PhD	student	at	the	University	of	Canterbury	in	New	
Zealand	 studying	 Sanskrit	 mathematical	 astronomy	 under	 the	
supervision	of	Professor	Clemency	Montelle	(University	of	Canterbury,	
NZ)	and	Professor	Kim	Plofker	(Union	College,	USA).	Sahana’s	research	
focuses	 on	 analyzing	 the	 mathematics	 of	 select	 chapters	 of	 the	
Grahalāghava	 (composed	 in	 1520	 CE)	 of	 Gaṇeśa	 Daivajña	 as	 well	 as	
comparing	 the	 commentarial	 styles	 and	 pedagogical	 methods	 of	
members	 of	 his	 professional	 lineage,	 Mallāri	 and	 Viśvanātha,	 in	 their	
accompanying	commentaries.	

	

Reconciling Error: Mathematical Innovations of Gaṇeśa Daivajña 

Astronomers’	basic	planetary	model	was	one	of	uniform	circular	motion	with	simple	
concentric	 orbits.	 They	 observed	 the	 effects	 of	 what	 we	 now	 attribute	 to	 the	
ellipticity	and	heliocentricity	of	planetary	orbits,	and	adjusted	this	basic	model	to	be	
an	 epicycle/eccentric	 model	 that	 relied	 on	 trigonometry.	 However,	 in	 1520	
Nandigrām,	 India,	 Gaṇeśa	 Daivajña	 composed	 his	 astronomical	 handbook	 the	
Grahalāghava,	 which	 famously	 claimed	 to	 reject	 astronomers’	 dependence	 on	
trigonometry	for	planetary	calculations.	Instead,	he	provided	algebraic	formulae	to	
approximate	 trigonometric	 computations.	 To	 account	 for	 approximation	 error,	
Gaṇeśa	devised	correctional	terms	or	even	additional	formulae.	In	this	talk,	I	focus	
on	 Gaṇeśa's	 unconventional	 inclusion	 of	 two	 corrective	 formulae	 to	 account	 for	
oddities	in	the	orbits	of	Venus	and	Mars,	and	will	discuss	possible	motivations	for	
these	 verses	 with	 the	 commentaries	 of	 two	 prominent	 members	 of	 Gaṇeśa's	
professional	lineage:	Mallāri	and	Viśvanātha.	
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A brief history of actual infinity: Aristotle, Leibniz and Cantor 

Section	 4	 of	 book	 4	 of	 Aristotle’s	 Metaphysics	 introduces	 the	 argument	 against	
infinity.	It	begins	with	a	refutation	of	some	contemporary	philosophies	of	difference,	
notably	that	of	Heraclitus,	who	argues	for	simultaneous	being	and	non-being	of	the	
same	thing.	For	thinkers	like	Heraclitus,	a	thing	can	both	be	and	not-be	at	the	same	
time.	 Aristotle	 finds	 this	 completely	 absurd.	 A	 thing,	 for	 example,	 a	 man	 has	 a	
particular	definition.	While	it	can	have	infinite	attributes,	man’s	definition	pertains	
to	his	essence,	which	is	composed	of	a	group	of	necessary	attributes	:	“	man	is	a	two-
footed	mammal”.	Once	this	definition	 is	given,	man	becomes	this	particular	 thing	
and	nothing	else.	One	can	counter	that	the	same	word	can	have	multiple	definitions.	
Aristotle’s	response	is	that	as	long	as	the	multiplicity	is	finite,	we	can	use	different	
words	 for	 different	 definitions,	 thereby	 maintaining	 that	 each	 word	 has	 a	 fixed	
definition	and	essence.	

Thus,	because	each	word	is	defined	in	terms	of	its	essential	attributes,	it	cannot	also	
be	the	same	as	it’s	refutation,	which	will	precisely	not	have	the	same	essence.	This	
is	true	for	the	same	reason	that	‘man’	is	not	the	same	as	‘white’	–	even	though	a	man	
can	be	white.	Man	and	white	as	terms	have	different	essences,	even	though	they	can	
be	accidental	attributes	of	one	another–	like	a	‘white	man’.	But	they	do	not	belong	
to	each	other’s	essence.	This	is	why	to	say	that	something	simultaneously	both	is,	
say,	white	and	not-white,	is	to	mix-up	the	thing’s	essence	–	everything	as	a	result	
loses	its	individual	being	and	in	a	world	without	the	stability	of	essence,	everything	
becomes	everything	else.	This	is	where	Aristotle	locates	infinity.	He	has	to	dismiss	
it’s	 actuality	 because	 for	 him	 all	modes	 of	meaning-making	 and	 communication	
breakdown	if	infinity	is	real.	

The	law	of	non-contradiction	is	the	ground	of	this	entire	edifice,	the	urlogical	shield	
against	 the	 chaos	 of	 infinity.	 Infinity	 cannot	 be	 an	 actual	 object	 in	 this	 universe	
because,	as	is	evident	from	the	preceding	discussion,	the	very	condition	for	infinity	
is	 violation	 of	 non-contradiction	 (something	 both	 is	 and	 is	 not)	 Infinity	 is	 the	
included	middle	 that	 splits	 apart	 the	binaries	of	Aristotelian	 identity.	Within	 this	
paradigm,	 it	 thus	 remains	 out	 of	 reach,	 ineffable,	 the	 point	 at	which	 the	 system	
collapses,	but	also,	it	stands	to	reason,	it	is	the	point	of	its	obscure	origin.	
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For	us,	what	this	means	is	that	the	whole	structure	quilted	by	the	laws	of	identity,	
non-contradiction	and	excluded	middles	and	that	relies	principally	on	the	notions	
of	substance	and	essence	 for	 the	definition	of	all	objects,	produces	 infinity	as	 the	
aporetic	 limit	 of	 its	 thought	 –	 the	 limit	 that	 is	 really	 ground.	 The	 truth	 of	 the	
Aristotelian	universe	thus	turns	on	its	head	because	infinity	is	in	truth	it’s	absolute	
reference,	its	sovereign	source	that	is	outside	it	but	sanctioning	everything	that	is	
happening	 within.	 The	 problem	 with	 the	 Aristotelian	 system	 is	 that	 it	 willingly	
forgets	 it’s	 origin	 and	 true	 being,	 a	 forgetting	 that	 engenders	 it’s	 discourse	 on	
identity.	Throughout	this	history,	we	will	try	to	isolate	the	epistemic	breaks	in	these	
formal	structures	–	Aristotle	gives	way	to	a	scholastic	theory	of	grammar	which	is	
nonetheless	 quite	 derivative	 of	 his	 own	 work,	 then	 Leibniz	 creates	 an	 actual	
syncategorematic	infinite	–	the	latter	is	properly	of	the	order	of	a	break	or	rupture.	
For	us,	the	question	will	be,	what	are	the	epistemic	shifts	from	a	classic	Aristotelian	
understanding	 that	 allow	 for	 the	 preparation	 of	 conditions	 that	 can	 generate	 an	
actual	 infinity?	 The	 history	we	 are	 tracing	will	 attempt	 to	 answer	 this	 question	
through	the	shifts	initiated	by	Leibniz	and	Cantor.	

For	 a	 large	 part,	 medieval	 theologians	 inherited	 Aristotle’s	 views	 on	 the	 actual	
infinite	 –	 especially	 influential	 was	 his	 refutation	 of	 Zeno	 in	Book	 III	 of	 Physics.	
Aristotle	 had	 said	 that	 Zeno’s	 infinity	 is	 not	 an	 actual	 entity	 because	 one	 never	
reaches	 it,	 there	 is	 always	 more	 to	 it.	 It	 is	 incompossible	 with	 the	 concept	 of	
wholeness,	and	what	is	not	whole	or	what	is	never	fully	itself	can	never	be	anything	
–	it	is	a	logical	misnomer.	The	infinite	refers	to	the	whole,	but	in	reality	we	only	get	
a	 part	 of	 the	 whole	 –	 finitude.	 At	 the	 level	 of	 actuality,	 it	 is	 always	 finite.	 For	
medievalists,	the	main	concern	for	infinity	was	as	a	divine	attribute	–	infinity	not	
only	 as	 the	 largest	 quantity,	 but	 as	 the	 highest	 perfection.	 The	 real	 task	 for	 the	
medievalists	was	to	rigorously	define	an	infinite	being	–	unlike	the	neo-Platonic	one-
infinite,	this	was	divine	being	was	not	outside	the	realm	of	beings,	rather	it	was	the	
supreme	Being.	Moreover,	its	existence	could	not	be	disputed.	So	while	at	the	level	
of	physical	 things,	 infinity	was	never	actual,	 it	was	a	 little	hard	to	say	that	divine	
infinity	was	merely	 potential.	 It	was	 a	 completed	whole,	 a	 totality	 and	 therefore	
absolutely	 real.	 Some,	 like	 Duns	 Scotus,	 even	 argued	 that	 this	 infinity	 was	
quantitative.	His	argument	is	almost	proto-Cantorian	in	its	imagination	–	he	accepts	
that	 as	 long	 as	we	 think	 of	 infinity	 as	 a	 process	 that	 is	 always	 heading	 towards	
completion	but	never	reaching	it,	infinity	remains	potential.	But	we	could	think	of	
an	 infinitely	 large	 quantity	 as	 actual	 if	 all	 its	parts	were	 available	 as	 a	 complete	
whole	simultaneously.	One	does	have	to	wait	for	the	future	to	find	the	completed	
infinity	 if	 one	 can	 think	 of	 infinity	 as	 already	 completely	 given,	 as	 a	 particular	
quantity.	Thus,	 it	 is	 true	 that	 long	before	 the	Leibnizian	 infinitesimal	we	have	 in	
Duns	Scotus	an	apprehension	of	infinity	as	an	actual	quantity.	

For	the	large	part	though,	despite	the	obvious	antinomies	that	concern	a	notion	of	
‘infinite	 being’,	 Aristotle’s	 views	 were	 gospel:	 till	 the	 dawn	 of	 calculus	 in	 the	
seventeenth	century,	infinity	was	deemed	merely	potential.	Although	God	was	real,	
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there	 could	no	natural	or	 logical	object	 that	 could	 really	encompass	 infinity.	The	
middle-ages	do	not	constitute	any	real	break	from	Aristotelian	thought.	The	revival	
of	Greek	learning	across	Europe	in	the	15th	and	16th	centuries	lead	to	a	flourishing	
of	 mathematical	 thought	 –	 which	 is	 why	 in	 the	 century	 before	 Leibniz,	 we	 find	
apprehensions	of	a	notions	that	would	rigorously	defined	in	calculus	later:	Fermat’s	
maxima	 and	 minima,	 Cavalieri’s	 indivisibles.	 The	 Leibnizian	 infinite	 really	
radicalizes	this	entire	history,	which	is	what	we	will	presently	follow.	

The	 first	 point	 of	 entry	 for	 us	 is	 the	 distinction	 between	 the	 categorematic	 and	
syncategorematic.	 Initially	 a	 medieval	 theory	 of	 logic,	 the	 distinction	 is	 utilised	
expertly	 by	 Leibniz	 to	 create	 a	major	 change.	 This	will	 require	 some	unpacking.	
Every	proposition	or	judgement	has	a	logical	constant,	apart	from	having	content.	
Take	the	sentence:	

Every	base	is	an	alkali.	OR	

No	Christian	prays	to	some	pagan.	

The	 terms	 every	 (universal	 affirmative),	 some	 (particular)	 and	 no	 (universal	
negative)	 are	 logical	 constants,	 whereas	 ‘boy’,	 ‘girl’,	 ‘christian’,	 ‘pagan’	 are	
subject/predicate	terms	that	supply	content	to	the	propositions.	The	constants	give	
form	to	an	enunciation,	whereas	the	categoremaric	subject/predicate	terms	supply	
the	matter	 that	 is	 organized	 by	 the	 formal	 constants.	 The	 constants	 are	 termed	
syncategorematic.	

The	categorematic	terms,	as	subjects	or	predicates,	have	meaning	on	their	own,	but	
the	syncategorematic	terms	get	meaning	contextually	–	‘if’,	‘then’,	‘every’,	‘some’	are	
terms	that	only	produce	meaning	through	attachment	with	categorematic	terms.	In	
the	 case	of	 the	 infinite,	 for	most	scholastics,	 infinity	was	 like	a	 syncategorematic	
term,	whose	meaning	on	its	own	is	indefinite.	Normal	categorematic	terms	could	not	
be	attributed	of	God	–	if	that	was	possible,	God	would	be	like	all	other	creatures.	It	
is	only	infinity	as	a	syncategorematic	attribute	that	can	be,	in	a	sense,	‘predicated’	of	
the	 Creator.	Now	 this	 syncategorematic	was	 accepted	 as	 a	 potential	 infinite	 –	 as	
we’ve	 made	 clear,	 with	 a	 few	 notable	 exceptions,	 infinity	 as	 actual	 was	 a	
contradictory	 concept	 for	 the	 scholastics.	 Leibniz	 takes	 an	 entirely	 heterodox	
position:	the	syncategorematic	infinite	is	actual.	This	means	that	he	is	not	disputing	
the	description	of	the	infinity	–	infinity	remains	a	process,	an	indefinite	incomplete	
entity,	but	completeness	or	wholeness	is	no	longer	necessary	for	actuality.	It	is	at	
this	precise	juncture	that	Leibniz	makes	his	intervention	–	something	can	be	actual	
without	 being	 a	 unity,	 the	 actual	 is	 fragmented,	 partial,	 not	 composed	 of	 atomic	
wholes	but	infinitesmals.	

Let	us	remember	the	precise	nature	of	Leibniz’s	opposition	to	atomism.	For	Leibniz,	
nature	 is	a	continuous	plenum,	not	a	whole	composed	of	separable	atoms.	Every	
point	of	the	plenum	can	be	further	decomposed,	every	unity	breaks	down	further,	
there	is	always	more	or	less,	always	an	outside.	The	actual	is	always	a	process,	never	
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a	unity.	But	 the	parts	of	nature	never	separate.	 It	 is	 like	the	same	thing	twisting,	
turning	and	expanding	or	contracting	without	breaking:	everything	is	topologically	
homeomorphic.	The	unity	is	therefore	at	the	level	of	homeomorphic	continuity.	It	is	
all	 One.	 But	 at	 the	 same	 time,	 internally	 everything	 is	 in	 permanent	 flux	 and	
becoming.	The	Leibnizian	actual	is	simply	the	unity	of	becoming.	

What	 is	 crucial	 for	 us	 is	 how	 he	 creates	 modern	 mathematical	 infinity	 by	
reconceptualizing	actuality/existence.	It	is	truths	of	existence,	as	opposed	to	truths	
of	essence,	that	are	extended	on	to	infinity.	Let	us	recall	the	famous	“Caesar	crossed	
the	Rubicon”	example.	The	crossing	leads	to	war,	which	leads	to	death,	which	leads	
to	several	other	events	and	so	on	and	the	chain	never	terminates.	This	series	is	the	
syncategorematic	infinite.	What	it	does	is	encompass	an	entire	world.	Now	we	are	
really	getting	into	the	heart	of	the	Leibnizian	system:	every	action	encloses	an	entire	
world.	There	are	infinite	worlds	with	an	infinite	number	of	events.	Every	world	is	a	
point	of	view,	and,	to	use	the	more	well-known	expression,	a	monad.	

Thus,	existence/actuality	 is	 the	unfolding	of	 the	syncategorematic	 infinite.	This	 is	
how	 Leibniz	 makes	 the	 syncategorematic	 actual	 –	 and	 how	 he	 creates	 a	 new	
conception	of	actual	infinity	that	pushes	Aristotelianism	to	its	limits.	If	infinity	was	
the	limit-point	of	the	Aristotelian	world,	if	it	was	simultaneously	it’s	terminal	point	
as	 well	 as	 it’s	 transcendental	 beginning,	 here	 we	 a	 system	 that	 completely	
internalizes	it.	It	is	a	real	object	in	this	world.	It	can	be	shown	in	detail,	though	it	
would	be	outside	the	direct	purview	of	this	work,	that	what	makes	this	possible	is	
his	radical	rehashing	of	the	Principle	of	Identity,	and	the	added	support	of	the	Law	
of	Continuity,	the	notion	of	compossibility	and	his	reading	of	the	analytic	a	priori.	It	
is	their	combination	that	ruptures	the	received	history	of	Aristotelian	logic.	

It	is	once	again	a	rupture	at	the	level	of	the	concept	‘actuality’	that	we	will	trace	after	
this.	Georg	Cantor	gives	us	a	truly	mathematical	notion	of	actuality,	defined	in	terms	
of	cardinality.	What	makes	aleph	naught	and	aleph	one	actual	is	that	they	can,	in	a	
sense,	be	measured	as	cardinality.	By	making	cardinality	the	ground	for	actuality,	he	
creates	 what	 is	 perhaps	 the	 first	 properly	 mathematical	 and	 non-philosophical	
definition	of	actuality.	What	follows	is	a	short	historical	demonstration	of	how	this	
idea	first	developed	in	Hume	and	went	from	Galileo,	Leibniz	to	Cantor:	

In	A	treatise	of	Human	Nature	Hume	writes:	

“I	 have	 already	 observed,	 that	 geometry,	 or	 the	 art,	 by	 which	 we	 fix	 the	
proportions	 of	 figures;	 though	 it	 much	 excels	 both	 in	 universality	 and	
exactness,	 the	 loose	 judgments	 of	 the	 senses	 and	 imagination;	 yet	 never	
attains	a	perfect	precision	and	exactness.	It’s	first	principles	are	still	drawn	
from	the	general	appearance	of	the	objects;	and	that	appearance	can	never	
afford	us	any	security,	when	we	examine,	the	prodigious	minuteness	of	which	
nature	is	susceptible.	Our	ideas	seem	to	give	a	perfect	assurance,	that	no	two	
right	lines	can	have	a	common	segment;	but	if	we	consider	these	ideas,	we	
shall	 find,	 that	 they	always	suppose	a	sensible	 inclination	of	 the	two	 lines,	
and	that	where	the	angle	they	form	is	extremely	small,	we	have	no	standard	
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of	a	straight	line	so	precise	as	to	assure	us	of	the	truth	of	this	proposition.	It	
is	the	same	case	with	most	of	the	primary	decisions	of	the	mathematics.	
There	remain,	therefore,	algebra	and	arithmetic	as	the	only	sciences,	in	which	
we	 can	 carry	 on	 a	 chain	 of	 reasoning	 to	 any	 degree	 of	 intricacy,	 and	 yet	
preserve	 a	 perfect	 exactness	 and	 certainty.	 We	 are	 possest	 of	 a	 precise	
standard,	by	which	we	can	judge	of	the	equality	and	proportion	of	numbers;	
and	according	as	they	correspond	or	not	to	that	standard,	we	determine	their	
relations,	 without	 any	 possibility	 of	 error.	 When	 two	 numbers	 are	 so	
combined,	as	that	the	one	has	always	a	unite	answering	to	every	unite	of	the	
other,	we	pronounce	 them	 equal;	 and	 it	 is	 for	want	 of	 such	 a	 standard	 of	
equality	 in	extension,	 that	geometry	can	scarce	be	esteemed	a	perfect	 and	
infallible	science.”	
(The	word	numbers	here	refer	to	a	collection	since	the	word	set	was	not	in	
usage	at	the	time.)	

It	is	crucial	to	make	a	note	here	of	the	kind	of	language	that	has	been	used,	-	‘.	.	.	a	
unite	 answering	 to	 every	 unite	 of	 the	 other’.	 This	 language	 foreshadows	 the	
mathematical	 concept	of	 a	one-to-one	correspondence	or	bijection	between	sets.	
The	interesting	part	is	that	Hume	chooses	to	‘pronounce	them	as	equal’.	

If	Leibniz	had	made	similar	deliberations	in	his	mind,	it	would	put	him	in	an	uneasy	
situation	 because	 it	would	 violate	 his	 seminal	 principle	 called	 Indiscernibility	 of	
Identicals.	Leibniz	put	forward	this	ontological	principle	(along	with	the	Identity	of	
Indiscernibles)	which	became	so	widely	used	and	agreed	upon	that	it	later	came	to	
be	known	as	Leibniz’	law.	Simply	put,	it	states	that	if	entity	A	is	identical	to	B,	then	
A	and	B	have	the	same	properties.	Leibniz	could	see	quite	easily	that	one	could	put	
the	natural	numbers	and	the	set	of	even	numbers	in	a	one-to-one	correspondence.	

1→2	

2→4	

3→6	

4→8	

And	so	on.	.	.	

But	to	say	that	the	set	of	natural	numbers	and	the	‘seemingly	smaller’	set	of	even	
numbers	had	exactly	the	same	properties	was	an	idea	Leibniz	was	not	able	to	accept.	
This	is	a	plausible	reason	why	in	spite	of	his	conviction	on	the	existence	of	the	‘actual	
infinite’	he	could	not	accept	the	position	Cantor	would	take.	

(It	would	be	negligent	at	 this	 juncture	 if	we	don’t	admit	 that	Hume’s	writing	and	
Leibniz’	deliberations	were	a	few	decades	apart	but	we	can	convincingly	argue	that	
the	essence	of	Hume’s	writings	was	completely	contained	in	the	deliberations	on	the	
Galilean	 paradox	 and	 Euclid’s	 fifth	 axiom	 (part-whole	 axiom)	 and	 Leibniz	 had	
written	 on	 these	 topics	 at	 length.	 Leibniz	had	 indicated	 that	 he	was	 reluctant	 to	
break	away	from	the	tradition	set	by	Euclid’s	fifth	which	states	 that	 the	whole	 is	
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greater	than	the	part;	the	reasons	for	that	reluctance	can	be	exactly	the	one	we	have	
outlined	above.)	

We	shall	revisit	Leibniz	and	his	views	on	the	infinite	and	how	they	helped	shape	his	
theory	of	the	unconscious	via	his	law	of	continuity,	but	for	now	we	shall	turn	our	
attention	to	Cantor.	

In	spite	of	his	respect	for	Leibniz’	metaphysics,	Cantor,	unlike	Leibniz,	did	not	feel	
the	need	to	be	restricted	by	them.	His	idea	of	infinity	was	remarkably	different	from	
what	 anyone	 could	 conceive	 of	 at	 the	 time	 and	 the	 cultural	 resistance	 to	 his	 set	
theory	was	inglorious	and	oppressing.	The	truly	radical	idea	in	his	theory	was	the	
rejection	of	the	Euclid’s	fifth	axiom	(the	whole	is	greater	than	the	part).	It	stems	from	
the	idea	that	since	that	comparison	was	only	meaningful	while	comparing	finite	sets	
of	objects,	it	is	at	best	a	contingent	truth	and	can	easily	not	be	valid	for	infinite	sets.	
Instead	of	finding	ways	to	subvert	Galileo’s	paradox,	Cantor	embraces	the	spirit	of	
the	paradox.	

(Galileo’s	 paradox	 could	 be	 restated	 as:	 There	 is	 a	 one	 to	 one	 correspondence	
between	each	number	and	its	squares.	

1→1	

2→4	

3→9	

.	.	.	.	.	.	

And	 so	 on.	Which	 convinced	Galileo	 that	 since	 there	 is	 for	 every	 square	 there	 is	
exactly	one	positive	square	root	so	it	would	seem	one	set	could	not	be	greater	than	
the	other.	He	concluded	that	the	words	less,	greater	and	equal	loses	significance	in	
a	discussion	of	infinite	sets.)	

Instead	of	being	uneasy	about	the	nature	of	this	problem,	Cantor	chooses	to	make	
this	the	bedrock	of	his	theory.	He	follows	Dedekind’s	definition	that	an	infinite	set	is	
precisely	one	which	has	a	one	to	one	correspondence	with	a	proper	subset.	When	it	
came	to	infinite	sets	he	had	two	laws.	The	first	was	that	if	there	existed	a	bijection	
(one-to	one	correspondence)	between	them	they	were	equivalent.	He	ascribed	to	
them	the	same	cardinality.	The	second	was	that	the	set	of	integers	had	an	infinite	
number	of	elements	whose	cardinality	he	denoted	by	0.	The	cardinality	of	power	
sets	of	every	 infinite	set	was	of	a	greater	cardinality	 than	the	corresponding	sets	
which	initiated	the	study	of	cardinal	numbers	and	the	transinfinite.	We	have	thus	
successfully	demonstrated	how	Cantor	applied	cardinality	to	the	construction	of	a	
mathematical	 actuality,	 thus	 completing	 his	 break	 from	Leibnizian	 infinity	while	
always	paying	homage	to	it.	

Cantor’s	 theory	 had	 gained	 almost	 universal	 acceptability	 in	most	mathematical	
communities	(although	many	alternative	formalisms	exist).	However,	there	were	a	
few	mathematical	questions	that	needed	to	be	resolved	like	Russell’s	paradox	and	
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so	on	which	led	to	refinements	like	Russell’s	Type	theory	and	to	the	much	used	ZFC	
(Zermelo-Fraenkel	axioms	with	the	axiom	of	choice).	

At	this	juncture	we	should	also	mention	the	formulation	of	the	Schroder-	Bernstein	
theorem	which	 states	 that	 given	 two	 infinite	 sets	 A	 and	 B	 such	 that	 there	 is	 an	
injective	(one-to-one	mapping)	from	A	to	B	and	also	an	injective	mapping	from	B	to	
A	then	there	also	exists	a	bijective	map	from	A	to	B.	Or	in	Cantor’s	formulation	they	
belong	to	the	same	class	of	infinity.	This	theorem	gives	us	an	extremely	important	
classification	 enabling	 us	 to	 compare	 and	 in	 some	 way	 equate	 between	 the	
cardinalities	of	different	 infinite	sets.	We	should	also	mention	that	 in	spite	of	 the	
naming	 of	 the	 theorem,	 the	 result	 was	 discovered	 by	 Cantor	 and	 the	 first	 proof	
available	was	given	by	Dedekind.	

From	a	philosophical	standpoint	this	theorem	is	significant	because	it	shows	us	that	
even	in	Cantor’s	formalism	of	 ’actual	infinity’	the	construction	is	not	absolute	and	
with	his	formalism	we	can	compare	and	classify	different	kinds	of	infinite	sets.	But	
even	Cantor	realises	that	the	iterations	of	subsequent	alephs	and	their	formulation	
of	being	the	power	set	of	one	after	the	other	creates	a	different	paradigm	of	infinity	
which	cannot	be	captured	in	the	paradigm	he	creates.	

In	Cantor’s	own	words	to	a	letter	which	he	wrote	to	Richard	Dedekind	he	says,	“I	
have	never	proceeded	from	any	Genus	supremum	of	 the	actual	 infinite.	Quite	 the	
contrary,	I	have	rigorously	proved	that	there	is	absolutely	no	Genus	supremum	of	
the	actual	infinite.	What	surpasses	all	that	is	finite	and	transfinite	is	no	Genus;	it	is	
the	 single,	 completely	 individual	 unity	 in	 which	 everything	 is	 included,	 which	
includes	the	Absolute,	 incomprehensible	 to	 the	human	understanding.	This	 is	 the	
Actus	Purissimus,	which	by	many	is	called	God.”	

	
Infinity	in	the	Indian	context	

If	we	turn	our	attention	to	Indian	context,	we	will	see	that	interesting	developments	
had	been	taking	place	for	centuries	which	require	closer	scrutiny.	

In	his	book	The	Crest	of	 the	Peacock:	Non-European	Roots	of	Mathematics,	George	
Joseph	 notes	 how	 as	 early	 in	 the	 sixth	 century	 BCE,	 Jain	 mathematicians	 had	
delineated	the	infinite	into	five	categories:	infinite	in	one	direction,	infinite	in	two	
directions,	infinite	in	area,	infinite	everywhere	and	perpetually	infinite.	While	from	
the	 categorization	 it	 is	 clear	 that	 their	understanding	of	 infinity	stemmed	 from	a	
spatio-temporal	 paradigm,	 we	 must	 also	 recognize	 the	 fact	 that	 they	 were	 also	
willing	 to	 transcend	 that	 through	 their	 conception	 of	 ‘infinite	 everywhere’.	 This	
conception	being	quite	close	to	the	idea	of	an	actual	infinity	which	we	have	discussed	
previously.	Now,	we	have	seen	how	Leibniz’s	rejection	of	the	Aristotelian	orthodoxy	
regarding	 infinity	 led	 him	 to	 cement	 his	 theory	 of	 calculus.	 Let	 us	 stop	 at	 this	
juncture	 to	 analyse	 the	 work	 of	 Madhava,	 the	 founder	 of	 the	 Kerala	 school	 of	
Astronomy	and	Mathematics.	He	had	formulated	the	infinite	series	representations	
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of	 trigonometric	 functions	 which	 would	 only	 appear	 in	 western	 mathematics	 a	
couple	of	centuries	later,	using	formal	methods	in	calculus	like	Taylor’s	expansion	
and	so	on.	This	leads	a	branch	of	historians	to	point	out	claims	of	eurocentrism	in	
outlook	towards	modern	mathematics	and	make	the	claim	that	early	formulations	
of	calculus	were	thus	made	in	India	much	before	the	west.	Instead	of	choosing	to	
invest	 in	 that	 line	 of	 questioning	 we	 take	 a	 far	 more	 interesting	 look	 at	 the	
significance	of	what	Madhava	had	achieved.	His	result	shows	us	that	it	is	possible	to	
conceive	of	basic	calculus	with	an	Aristotelian	framework.	It	is	not	necessary	for	us	
to	adopt	Leibniz	philosophical	take	on	infinity	in	order	to	establish	basic	calculus.	In	
fact,	Madhava	and	his	successors	would	go	on	to	find	infinite	series,	expansions	for	
Pi	as	well	based	on	their	knowledge	and	treatment	of	infinite	continued	fractions.	In	
fact	the	question	of	the	influence	of	infinite	continued	fractions	in	the	development	
of	mathematical	ideas	in	the	far	south	is	an	interesting	question	that	should	also	be	
taken	up	in	greater	detail	as	we	can	see	that	influence	persist	through	the	centuries	
to	 influence	even	Ramanujan	who	made	remarkable	contributions	 in	 this	 field	of	
enquiry	and	completely	challenged	our	preconceived	notions	of	infinity.	

	




